Hydroxynaphthyridine-derived group III metal chelates: wide band gap and deep blue analogues of green Alq3 (tris(8-hydroxyquinolate)aluminum) and their versatile applications for organic light-emitting diodes.
نویسندگان
چکیده
A series of group III metal chelates have been synthesized and characterized for the versatile application of organic light-emitting diodes (OLEDs). These metal chelates are based on 4-hydroxy-1,5-naphthyridine derivates as chelating ligands, and they are the blue version analogues of well-known green fluorophore Alq(3) (tris(8-hydroxyquinolinato)aluminum). These chelating ligands and their metal chelates were easily prepared with an improved synthetic method, and they were facially purified by a sublimation process, which enables the materials to be readily available in bulk quantity and facilitates their usage in OLEDs. Unlike most currently known blue analogues of Alq(3) or other deep blue materials, metal chelates of 4-hydroxy-1,5-naphthyridine exhibit very deep blue fluorescence, wide band gap energy, high charge carrier mobility, and superior thermal stability. Using a vacuum-thermal-deposition process in the fabrication of OLEDs, we have successfully demonstrated that the application of these unusual hydroxynaphthyridine metal chelates can be very versatile and effective. First, we have solved or alleviated the problem of exciplex formation that took place between the hole-transporting layer and hydroxynaphthyridine metal chelates, of which OLED application has been prohibited to date. Second, these deep blue materials can play various roles in OLED application. They can be a highly efficient nondopant deep blue emitter: maximum external quantum efficiency eta(ext) of 4.2%; Commision Internationale de L'Eclairage x, y coordinates, CIE(x,y) = 0.15, 0.07. Compared with Alq(3), Bebq(2) (beryllium bis(benzoquinolin-10-olate)), or TPBI (2,2',2''-(1,3,5-phenylene)tris(1-phenyl-1H-benzimidazole), they are a good electron-transporting material: low HOMO energy level of 6.4-6.5 eV and not so high LUMO energy level of 3.0-3.3 eV. They can be ambipolar and possess a high electron mobility of 10(-4) cm(2)/V s at an electric field of 6.4 x 10(5) V/cm. They are a qualified wide band gap host material for efficient blue perylene (CIE(x,y) = 0.14, 0.17 and maximum eta(ext) 3.8%) or deep blue 9,10-diphenylanthracene (CIE(x,y) = 0.15, 0.06 and maximum eta(ext) 2.8%). For solid state lighting application, they are desirable as a host material for yellow dopant (rubrene) in achieving high efficiency (eta(ext) 4.3% and eta(P) 8.7 lm/W at an electroluminance of 100 cd/m(2) or eta(ext) 3.9% and eta(P) 5.1 lm/W at an electroluminance of 1000 cd/m(2)) white electroluminescence (CIE(x,y) = 0.30, 0.35).
منابع مشابه
Femtosecond ̄uorescence upconversion spectroscopy of vapor-deposited tris(8-hydroxyquinoline) aluminum ®lms
Vapor-deposited Alq3 is used as the green emitting layer in a class of organic light-emitting diodes. In this paper, the time dependence of the ̄uorescence from thin Alq3 ®lms has been studied by means of the femtosecond ̄uorescence upconversion technique. From the temporally resolved emission spectra, obtained after spectral reconstruction, the existence of dierent emissive sites in the Alq3 ...
متن کاملDC lifetime of encapsulated organic light emitting diodes
Organic light emitting diodes (OLEDs) are ideal sources for chemical and biological optical sensors [1], due to their simplicity, low cost (disposable applications) and possibility to be integrated on chip and fabricated in the form of large 2D arrays (microarray fluorescence [2]) even on flexible plastic substrates. OLEDs with lifetimes of a few hundreds of hours at initial luminance values in...
متن کاملDevice characteristics of organic light-emitting diodes based on electronic structure of the Ba-doped Alq3 layer.
Organic light-emitting diodes (OLEDs) with a Ba-doped tris(8-quinolinolato)aluminum(III) (Alq3) layer were fabricated to reduce the barrier height for electron injection and to improve the electron conductivity. In the OLED consisting of glass/ITO/4,4',4"-tris[2-naphthylphenyl-1-phenylamino]triphenylamine (2-TNATA, 30 nm)/4,4'-bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl (NPB, 18 nm)/Alq3 (42 nm)...
متن کاملChemistry between magnesium and multiple molecules in tris(8-hydroxyquinoline) aluminum films.
Metal organic contacts are at the basis of devices such as organic light emitting diodes (OLEDs). Here, we report a theoretical investigation of the chemical interaction between a Mg atom and an organic film made of tris(8-hydroxyquinoline)aluminum (Alq3) molecules. The latter is modeled either by an isolated molecule or by a bulk crystal. Using first-principles molecular dynamics for structura...
متن کاملsimulations for organic light - emitting diodes
The physical and chemical properties of tris(8-hydroxyquinolinato)aluminum (Alq3), one of the organic materials most commonly used as the light-emitting layer of OLEDs, and the interface with possible metal cathodes are investigated by means of first-principles computer simulations. A number of new insights have emerged from this study, and we emphasize the consequences of the properties thus d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 131 2 شماره
صفحات -
تاریخ انتشار 2009